

ITS World Congress

Bordeaux, France 5 to 9 October 2015

Mobility Application Development & Testing – U.S. Update

Carl Andersen Federal Highway Administration, USDOT

SIS22: International challenges to solutions for sustainable mobility

TOWARDS INTELLIGENT MOBILITY

Better use of space

Organised by

Co-organised by

Hosted by

DYNAMIC MOBILITY APPLICATIONS PROGRAM

Vision

- Expedite development, testing, commercialization, and deployment of innovative mobility application
 - maximize system productivity
 - enhance mobility of individuals within the system

Objectives

- Create applications using frequently collected and rapidly disseminated multi-source data from connected travelers, vehicles and infrastructure
- Develop and assess applications showing potential to improve nature, accuracy, precision and/or speed of dynamic decision
- Demonstrate promising applications predicted to significantly improve capability of transportation system
- Determine required infrastructure for transformative applications implementation, along with associated costs and benefits

Project Partners

Strong internal and external participation

DMA PROGRAM APPROACH TO OVERCOMING TWO KEY CHALLENGES TO APPLICATION DEPLOYMENT

- Challenge 1 (Technical Soundness)
 Are the DMA bundles technically sound and deployment-ready?
 - Create a series of systems engineering documents (e.g., ConOps, SyRs)
 - Share code from open source bundle prototype development (OSADP website: http://www.itsforge.net/)
 - Demonstrate bundle prototypes (in isolation)
 - Field test integrated deployment concepts from across CV programs
- Challenge 2 (Transformative Impact)
 Are DMA bundle-related benefits big enough to warrant deployment?
 - Engage stakeholders to set transformative impact measures and goals
 - Assess whether prototypes show impact when demonstrated
 - Estimate benefits associated with broader deployment
 - Utilize analytic testbeds to identify synergistic bundle combinations

DMA PROTOTYPE DEVELOPMENT ACTIVITY

ENABLEATIS DESCRIPTION

Objective - To provide support to the marketplace for application development,
i.e., enabling development of Advanced Traveler Information Systems. EnableATIS
is not developing a specific application or system, but is rather seeking to
formalize a framework whereby multiple activities are envisioned to interact to
support a diverse traveler information environment.

Projects/Status

- SmarTrAC from UMN
 - Demonstrated in December 2014
 - Submitted final report in February 2015
- CloudCar by MIT
 - Began testing in June 2014
 - Concluded in June 2015
- ATIS 2.0 Precursor System
 - In preliminary stages

Source: EnableATIS Operational Concept

ENABLEATIS KEY FINDINGS

SmarTrAC

 Test data indicates acceptable performance of SmarTrAC, with the project team observing a reasonable battery consumption rate, a moderate data storage/transmission requirement, a high accuracy in identifying activity vs. trip episodes, etc.

Calendar

Map

Source: DMA Program

CloudCar

 The report from CloudCar project indicated that for the current scope of the CloudThink and Mobility as a Service project, MySQL is sufficient. For larger scale deployment of CloudThink and MaaS, a framework better suited for large data should be used, such as Hadoop.

INFLO DESCRIPTION

 Objective – To collect and disseminate multi-source data drawn from connected vehicles, infrastructure, and travelers to increase roadway throughput, reduce crashes, emissions and fuel consumption.

Prototype

- Site: Seattle, WS

Applications: SPD-HARM and Q-WARN

Status

- SPD-HARM and Q-WARN were demonstrated in January 2015.
- All the final reports are available on the DMA website.
- CAMP completed technical feasibility study of prototyping CACC in March 2015.

Source: USDOT

INFLO KEY FINDINGS

- Results from the simulation analysis found that the prototype significantly reduced the magnitudes of the speed drops (shockwaves) between vehicles, even at the 10% market penetration level.
 - SPD-HARM resulted in reduction in speed variations between freeway segments by 18-58% and within freeway segments by 10-47%, resulting in fewer rear-end crashes
- The trade-off for the improved safety is that the prototype increases the geographic impact of existing bottlenecks on freeway speeds by expanding the upstream distance that is affected by congestion.

Source: Battelle

Source: WSDOT

TOWARDS INTELLIGENT MOBILITY

Better use of space

DMA-ATDM AMS TESTBEDS DESCRIPTION

• **Objectives** - To develop multiple AMS Testbeds to evaluate the system wide impacts of individual and logical combinations of DMA bundles/ATDM strategies, and identify conflicts and synergies in order to maximize benefits.

AMS Testbeds

- San Mateo (CA) Tactical AMS Testbed
- Pasadena (CA) Multi-Scale AMS Testbed
- Phoenix (AZ) Strategic AMS Testbed
- Dallas (TX) and San Diego (CA) Multi-Modal Corridor AMS Testbeds
- Chicago (IL) Road-Weather AMS Testbed

Status

- Completed testbed specific data collection and isolation of confounding factors through cluster analysis
- Performing testbed specific calibration and developing evaluation plan
- Preliminary results are available from San Mateo Testbed on the DMA website:
 http://www.its.dot.gov/dma/pdf/DMA ATDM AMS Testbed Preliminary March2015.pdf

DMA-ATDM AMS PRELIMINARY FINDINGS

Applications Tested

SPD-HARM, INC-ZONE, MMITSS, and SPD-HARM + INC-ZONE

Preliminary Findings

- Benefit of implementing applications in isolation or in combination differs from one operational condition to another:
 - On dry weather days, delay reduced by 4% with SPD-HARM+INC-ZONE, compared to 2.5% reduction with only SPD-HARM and 0.8% reduction with only INC-ZONE

San Mateo Testbed

Source: USDOT

- On days with rain and low demand, SPD-HARM+INC-ZONE increased delay.
- BSM frequency is not always critical for the effectiveness of DMA applications –
 difference in impacts of 1s and 3s frequencies is minimal (less than 0.5%).
- Effectiveness of DMA applications reduces with increase in latency most of the benefits of the system disappear beyond 1s-latency.
- Level of penetration of technology is an essential factor in the DMA application effectiveness – MMITSS results in 13% reduction in vehicle delay at 100% market penetration compared to the base case vs. 6% reduction at 25% penetration.